SCORE _____

Unit 2 Test

(Chapters 4-6)

For Questions 1-7, simplify. Assume that no denominator equals $\bf 0$.

1.
$$(7x^2 + 3x - 9) - (-x^2 + 8x - 3)$$

2.
$$5x^3(7x)^2$$

3.
$$(2x-3)^2$$

4.
$$\frac{8y^3 + 27}{2xy - 10y + 3x - 15}$$

5.
$$\sqrt{16x^2y^4}$$

6.
$$\sqrt{12} - \sqrt{18} + 3\sqrt{50} + \sqrt{75}$$

7.
$$\frac{2+i}{1-3i}$$

8. Use synthetic division to find
$$(2x^3 - 5x^2 + 7x - 1) \div (x - 1)$$
.

9. Write the expression
$$m^{\frac{7}{9}}$$
 in radical form.

10. Solve
$$\sqrt{3x+6} + 4 \le 7$$
.

11. Graph
$$f(x) = -x^2 + 4x - 3$$
, labeling the y-intercept, vertex, and axis of symmetry.

13. Solve $2x^2 = 3x + 2$ by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located.

14. Solve
$$x^2 - 2x = 24$$
 by factoring.

15. Write a quadratic equation with
$$-\frac{3}{4}$$
 and 4 as its roots.

Write the equation in the form $ax^2 + bx + c = 0$, where a, b, and c are integers.

16. Find the exact solutions to
$$6x^2 + x + 4 = 0$$
 by using the Quadratic Formula.

17. Find the value of the discriminant for
$$9x^2 + 1 = 6x$$
. Then describe the number and type of roots for the equation.

Unit 2 Test

' (continued)

(Chapters 4-6)

18. Identify the vertex, axis of symmetry, and direction of opening for $y = 2(x + 3)^2 - 5$.

18.____

19. Write $y = -4x^2 + 8x - 1$ in vertex form.

19. _____

20. Graph $y > x^2 - 2x + 1$.

21. Find p(-3) if $p(x) = x^5 + 3x^2$.

21. _____

22. Graph $f(x) = -(x)^4 + 4x^2 - 2x$ by making a table of values. Then estimate the *x*-coordinates at which the relative maxima and relative minima occur.

23. Solve $x^4 + 200 = 102x^2$.

23. _____

24. Use synthetic substitution to find f(-3) for $f(x) = 2x^3 - 6x^2 - 5x + 7$.

24. _____

25. One factor of $f(x) = x^3 + x^2 - 22x - 40$ is x + 4. Find the other factors.

25. _____

26. State the number of positive real zeros, negative real zeros, and imaginary zeros for $g(x) = 9x^3 - 7x^2 + 10x - 4$.

1 N. Y.

27. List all of the possible rational zeros of $f(x) = 3x^5 - 7x^3 + 2x - 15$.

27. _____

28. If f(x) = 3x and g(x) = 4x - 3, find f[g(5)] and g[f(5)].

29. _____

29. Find the inverse of f(x) = 7x - 2.

.

26.

30.

30. Graph $y \ge \sqrt{3x + 12}$.

Chapter 6

74